منابع مشابه
On Pseudo Hermite Matrix Polynomials of Two Variables
Abstract. The main aim of this paper is to define a new polynomial, say, pseudo hyperbolic matrix functions, pseudo Hermite matrix polynomials and to study their properties. Some formulas related to an explicit representation, matrix recurrence relations are deduced, differential equations satisfied by them is presented, and the important role played in such a context by pseudo Hermite matrix p...
متن کاملOn the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
Consider an n × <span style="fon...
متن کاملWaring’s Problem for Polynomials in Two Variables
We prove that all polynomials in several variables can be decomposed as the sums of kth powers: P (x1, . . . , xn) = Q1(x1, . . . , xn) + · · ·+Qs(x1, . . . , xn), provided that elements of the base field are themselves sums of kth powers. We also give bounds for the number of terms s and the degree of the Qi . We then improve these bounds in the case of two variables polynomials of large degre...
متن کاملWaring Problem for Polynomials in Two Variables
We prove that all polynomials in several variables can be decomposed as the sum of kth powers: P (x1, . . . , xn) = Q1(x1, . . . , xn) + · · ·+Qs(x1, . . . , xn), provided that elements of the base field are themselves sum of kth powers. We also give bounds for the number of terms s and the degree of the Qi . We then improve these bounds in the case of two variables polynomials to get a decompo...
متن کاملA matrix Rodrigues formula for classical orthogonal polynomials in two variables
Classical orthogonal polynomials in one variable can be characterized as the only orthogonal polynomials satisfying a Rodrigues formula. In this paper, using the second kind Kronecker power of a matrix, a Rodrigues formula is introduced for classical orthogonal polynomials in two variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2019
ISSN: 2073-8994
DOI: 10.3390/sym11020151